Mapping Cyanobacteria with PACE data¶
Install packages¶
Uncomment the following cell to install the HyperCoast package.
In [1]:
Copied!
# %pip install -U "hypercoast[extra]"
# %pip install -U "hypercoast[extra]"
Import libraries¶
In [2]:
Copied!
import earthaccess
import hypercoast
import earthaccess
import hypercoast
Download PACE data¶
To download and access the PACE AOP data, you will need to create an Earthdata login. You can register for an account at urs.earthdata.nasa.gov. Once you have an account, run the following cell and enter your NASA Earthdata login credentials.
In [3]:
Copied!
earthaccess.login(persist=True)
earthaccess.login(persist=True)
Out[3]:
<earthaccess.auth.Auth at 0x7fca442a7950>
Search for PACE AOP data:
In [4]:
Copied!
results = hypercoast.search_pace(
bounding_box=(-83, 25, -81, 28),
temporal=("2024-07-30", "2024-08-15"),
short_name="PACE_OCI_L2_AOP_NRT",
count=1,
)
results = hypercoast.search_pace(
bounding_box=(-83, 25, -81, 28),
temporal=("2024-07-30", "2024-08-15"),
short_name="PACE_OCI_L2_AOP_NRT",
count=1,
)
Download PACE AOP data:
In [5]:
Copied!
hypercoast.download_pace(results[:1], out_dir="data")
hypercoast.download_pace(results[:1], out_dir="data")
Read PACE data¶
Read PACE AOP data as an xarray.Dataset
:
In [6]:
Copied!
filepath = "data/PACE_OCI.20240730T181157.L2.OC_AOP.V2_0.NRT.nc"
dataset = hypercoast.read_pace(filepath)
# dataset
filepath = "data/PACE_OCI.20240730T181157.L2.OC_AOP.V2_0.NRT.nc"
dataset = hypercoast.read_pace(filepath)
# dataset
Compute band ratios¶
In [7]:
Copied!
da = dataset["Rrs"]
data = (
(da.sel(wavelength=650) > da.sel(wavelength=620))
& (da.sel(wavelength=701) > da.sel(wavelength=681))
& (da.sel(wavelength=701) > da.sel(wavelength=450))
)
# data
da = dataset["Rrs"]
data = (
(da.sel(wavelength=650) > da.sel(wavelength=620))
& (da.sel(wavelength=701) > da.sel(wavelength=681))
& (da.sel(wavelength=701) > da.sel(wavelength=450))
)
# data
The spectra of cyanobacteria bloom:¶
Visualize the selected region based on band ratios¶
In [8]:
Copied!
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
# Create a plot
fig, ax = plt.subplots(figsize=(12, 6), subplot_kw={"projection": ccrs.PlateCarree()})
# ax.set_extent([-93, -87, 28, 32], crs=ccrs.PlateCarree())
# Plot the data
data.plot(
ax=ax,
transform=ccrs.PlateCarree(),
cmap="coolwarm",
cbar_kwargs={"label": "Cyano"},
)
# Add coastlines
ax.coastlines()
# Add state boundaries
states_provinces = cfeature.NaturalEarthFeature(
category="cultural",
name="admin_1_states_provinces_lines",
scale="50m",
facecolor="none",
)
ax.add_feature(states_provinces, edgecolor="gray")
# Optionally, add gridlines, labels, etc.
ax.gridlines(draw_labels=True)
plt.show()
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
# Create a plot
fig, ax = plt.subplots(figsize=(12, 6), subplot_kw={"projection": ccrs.PlateCarree()})
# ax.set_extent([-93, -87, 28, 32], crs=ccrs.PlateCarree())
# Plot the data
data.plot(
ax=ax,
transform=ccrs.PlateCarree(),
cmap="coolwarm",
cbar_kwargs={"label": "Cyano"},
)
# Add coastlines
ax.coastlines()
# Add state boundaries
states_provinces = cfeature.NaturalEarthFeature(
category="cultural",
name="admin_1_states_provinces_lines",
scale="50m",
facecolor="none",
)
ax.add_feature(states_provinces, edgecolor="gray")
# Optionally, add gridlines, labels, etc.
ax.gridlines(draw_labels=True)
plt.show()
Cyanobacteria and Spectral Angle Mapper¶
Spectral Angle Mapper: Spectral similarity Input: library of Cyanobacteria bloom Rrs spectra with Chla at different levels
Spectral Mixture Analysis: unmix different cyanobacteria species based on spectral difference.
K-means applied to the whole image¶
In [9]:
Copied!
import numpy as np
from sklearn.cluster import KMeans
import numpy as np
from sklearn.cluster import KMeans
In [10]:
Copied!
# Get the shape of the DataArray
print("Shape of da:", da.shape)
# Get the shape of the DataArray
print("Shape of da:", da.shape)
Shape of da: (1710, 1272, 184)
In [11]:
Copied!
# Get the dimension names of the DataArray
print("Dimension names:", da.dims)
# Get the dimension names of the DataArray
print("Dimension names:", da.dims)
Dimension names: ('latitude', 'longitude', 'wavelength')
In [12]:
Copied!
# Get the size of each dimension
print("Size of each dimension:", da.sizes)
# Get the size of each dimension
print("Size of each dimension:", da.sizes)
Size of each dimension: Frozen({'latitude': 1710, 'longitude': 1272, 'wavelength': 184})
In [13]:
Copied!
reshaped_data = da.values.reshape(-1, da.shape[-1])
reshaped_data = da.values.reshape(-1, da.shape[-1])
In [14]:
Copied!
reshaped_data_no_nan = reshaped_data[~np.isnan(reshaped_data).any(axis=1)]
reshaped_data_no_nan = reshaped_data[~np.isnan(reshaped_data).any(axis=1)]
In [15]:
Copied!
# Apply K-means clustering to classify into 5-6 water types.
n_clusters = 6
kmeans = KMeans(n_clusters=n_clusters, random_state=0)
kmeans.fit(reshaped_data_no_nan)
# Apply K-means clustering to classify into 5-6 water types.
n_clusters = 6
kmeans = KMeans(n_clusters=n_clusters, random_state=0)
kmeans.fit(reshaped_data_no_nan)
Out[15]:
KMeans(n_clusters=6, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
KMeans(n_clusters=6, random_state=0)
In [16]:
Copied!
# Initialize an array for cluster labels with NaN
labels = np.full(reshaped_data.shape[0], np.nan)
# Initialize an array for cluster labels with NaN
labels = np.full(reshaped_data.shape[0], np.nan)
In [17]:
Copied!
# Assign the computed cluster labels to the non-NaN positions
labels[~np.isnan(reshaped_data).any(axis=1)] = kmeans.labels_
# Assign the computed cluster labels to the non-NaN positions
labels[~np.isnan(reshaped_data).any(axis=1)] = kmeans.labels_
In [18]:
Copied!
# Reshape the labels back to the original spatial dimensions
cluster_labels = labels.reshape(da.shape[:-1])
# Reshape the labels back to the original spatial dimensions
cluster_labels = labels.reshape(da.shape[:-1])
In [19]:
Copied!
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import cartopy.crs as ccrs
import cartopy.feature as cfeature
In [20]:
Copied!
# Assume 'cluster_labels' contains the K-means classification results reshaped to the original spatial dimensions
# Also assume that 'da' has the original latitude and longitude data
latitudes = da.coords["latitude"].values
longitudes = da.coords["longitude"].values
# Create a custom discrete color map for K-means clusters
cmap = mcolors.ListedColormap(
["#377eb8", "#ff7f00", "#4daf4a", "#f781bf", "#a65628", "#984ea3"]
)
bounds = np.arange(-0.5, n_clusters, 1)
norm = mcolors.BoundaryNorm(bounds, cmap.N)
# Create a figure and axis with the correct map projection
fig, ax = plt.subplots(
figsize=(6, 4), dpi=200, subplot_kw={"projection": ccrs.PlateCarree()}
)
# Plot the K-means classification results on the map
im = ax.pcolormesh(
longitudes,
latitudes,
cluster_labels,
cmap=cmap,
norm=norm,
transform=ccrs.PlateCarree(),
)
# Add geographic features for context
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=":")
ax.add_feature(cfeature.STATES, linestyle="--")
# Add gridlines
ax.gridlines(draw_labels=True)
# Set the extent to zoom in to the specified region
ax.set_extent([-95, -85, 27, 33], crs=ccrs.PlateCarree())
# Add color bar with labels
cbar = plt.colorbar(
im,
ax=ax,
orientation="vertical",
pad=0.02,
fraction=0.05,
ticks=np.arange(n_clusters),
)
cbar.ax.set_yticklabels([f"Class {i+1}" for i in range(n_clusters)])
cbar.set_label("Water Types", rotation=270, labelpad=20)
# Add title
ax.set_title("Water Type Classification using K-means", fontsize=16)
# Show the plot
plt.show()
# Assume 'cluster_labels' contains the K-means classification results reshaped to the original spatial dimensions
# Also assume that 'da' has the original latitude and longitude data
latitudes = da.coords["latitude"].values
longitudes = da.coords["longitude"].values
# Create a custom discrete color map for K-means clusters
cmap = mcolors.ListedColormap(
["#377eb8", "#ff7f00", "#4daf4a", "#f781bf", "#a65628", "#984ea3"]
)
bounds = np.arange(-0.5, n_clusters, 1)
norm = mcolors.BoundaryNorm(bounds, cmap.N)
# Create a figure and axis with the correct map projection
fig, ax = plt.subplots(
figsize=(6, 4), dpi=200, subplot_kw={"projection": ccrs.PlateCarree()}
)
# Plot the K-means classification results on the map
im = ax.pcolormesh(
longitudes,
latitudes,
cluster_labels,
cmap=cmap,
norm=norm,
transform=ccrs.PlateCarree(),
)
# Add geographic features for context
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=":")
ax.add_feature(cfeature.STATES, linestyle="--")
# Add gridlines
ax.gridlines(draw_labels=True)
# Set the extent to zoom in to the specified region
ax.set_extent([-95, -85, 27, 33], crs=ccrs.PlateCarree())
# Add color bar with labels
cbar = plt.colorbar(
im,
ax=ax,
orientation="vertical",
pad=0.02,
fraction=0.05,
ticks=np.arange(n_clusters),
)
cbar.ax.set_yticklabels([f"Class {i+1}" for i in range(n_clusters)])
cbar.set_label("Water Types", rotation=270, labelpad=20)
# Add title
ax.set_title("Water Type Classification using K-means", fontsize=16)
# Show the plot
plt.show()
Keans applied to selected pixels¶
In [21]:
Copied!
# Assume 'cluster_labels' contains the K-means classification results reshaped to the original spatial dimensions
# Also assume that 'da' has the original latitude and longitude data
latitudes = da.coords["latitude"].values
longitudes = da.coords["longitude"].values
# Filtering condition based on wavelength values
filter_condition = (
(da.sel(wavelength=650) > da.sel(wavelength=620))
& (da.sel(wavelength=701) > da.sel(wavelength=681))
& (da.sel(wavelength=701) > da.sel(wavelength=450))
)
# Apply the filtering condition to the K-means classification results
filtered_cluster_labels = np.where(filter_condition, cluster_labels, np.nan)
# Create a custom discrete color map for K-means clusters
cmap = mcolors.ListedColormap(
["#e41a1c", "#377eb8", "#4daf4a", "#f781bf", "#a65628", "#984ea3"]
)
bounds = np.arange(-0.5, n_clusters, 1)
norm = mcolors.BoundaryNorm(bounds, cmap.N)
# Create a figure and axis with the correct map projection
fig, ax = plt.subplots(
figsize=(6, 4), dpi=200, subplot_kw={"projection": ccrs.PlateCarree()}
)
# Plot the filtered K-means classification results on the map
im = ax.pcolormesh(
longitudes,
latitudes,
filtered_cluster_labels,
cmap=cmap,
norm=norm,
transform=ccrs.PlateCarree(),
)
# Add geographic features for context
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=":")
ax.add_feature(cfeature.STATES, linestyle="--")
# Add gridlines
ax.gridlines(draw_labels=True)
# Set the extent to zoom in to the specified region
ax.set_extent([-95, -85, 27, 33], crs=ccrs.PlateCarree())
# Add color bar with labels
cbar = plt.colorbar(
im,
ax=ax,
orientation="vertical",
pad=0.02,
fraction=0.05,
ticks=np.arange(n_clusters),
)
cbar.ax.set_yticklabels([f"Class {i+1}" for i in range(n_clusters)])
cbar.set_label("Water Types", rotation=270, labelpad=20)
# Add title
ax.set_title("Water Type Classification using K-means", fontsize=16)
# Show the plot
plt.show()
# Assume 'cluster_labels' contains the K-means classification results reshaped to the original spatial dimensions
# Also assume that 'da' has the original latitude and longitude data
latitudes = da.coords["latitude"].values
longitudes = da.coords["longitude"].values
# Filtering condition based on wavelength values
filter_condition = (
(da.sel(wavelength=650) > da.sel(wavelength=620))
& (da.sel(wavelength=701) > da.sel(wavelength=681))
& (da.sel(wavelength=701) > da.sel(wavelength=450))
)
# Apply the filtering condition to the K-means classification results
filtered_cluster_labels = np.where(filter_condition, cluster_labels, np.nan)
# Create a custom discrete color map for K-means clusters
cmap = mcolors.ListedColormap(
["#e41a1c", "#377eb8", "#4daf4a", "#f781bf", "#a65628", "#984ea3"]
)
bounds = np.arange(-0.5, n_clusters, 1)
norm = mcolors.BoundaryNorm(bounds, cmap.N)
# Create a figure and axis with the correct map projection
fig, ax = plt.subplots(
figsize=(6, 4), dpi=200, subplot_kw={"projection": ccrs.PlateCarree()}
)
# Plot the filtered K-means classification results on the map
im = ax.pcolormesh(
longitudes,
latitudes,
filtered_cluster_labels,
cmap=cmap,
norm=norm,
transform=ccrs.PlateCarree(),
)
# Add geographic features for context
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=":")
ax.add_feature(cfeature.STATES, linestyle="--")
# Add gridlines
ax.gridlines(draw_labels=True)
# Set the extent to zoom in to the specified region
ax.set_extent([-95, -85, 27, 33], crs=ccrs.PlateCarree())
# Add color bar with labels
cbar = plt.colorbar(
im,
ax=ax,
orientation="vertical",
pad=0.02,
fraction=0.05,
ticks=np.arange(n_clusters),
)
cbar.ax.set_yticklabels([f"Class {i+1}" for i in range(n_clusters)])
cbar.set_label("Water Types", rotation=270, labelpad=20)
# Add title
ax.set_title("Water Type Classification using K-means", fontsize=16)
# Show the plot
plt.show()